Потеря напряжения от длины кабеля


Рассчет падение напряжения по длине кабеля

Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.

Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.

На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.

к содержанию ↑

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

к содержанию ↑

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

к содержанию ↑

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода — p.
  • Длина токопроводящего кабеля — l.
  • Площадь сечения проводника — S.
  • Сила тока нагрузки в амперах — I.
  • Сопротивление проводника — R.
  • Напряжение в электрической цепи — U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

U = 0,0175*40*2/1,5*16

U = 14,93 В

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

к содержанию ↑

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

к содержанию ↑

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2 Линия с одной фазой Линия с тремя фазами
Питание Освещение Питание Освещение
Режим Пуск Режим Пуск
Медь Алюминий Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1 Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1
1,5 24,0 10,6 30,0 20,0 9,4 25,0
2,5 14,4 6,4 18,0 12,0 5,7 15,0
4,0 9,1 4,1 11,2 8,0 3,6 9,5
6,0 10,0 6,1 2,9 7,5 5,3 2,5 6,2
10,0 16,0 3,7 1,7 4,5 3,2 1,5 3,6
16,0 25,0 2,36 1,15 2,8 2,05 1,0 2,4
25,0 35,0 1,5 0,75 1,8 1,3 0,65 1,5
35,0 50,0 1,15 0,6 1,29 1,0 0,52 1,1
50,0 70,0 0,86 0,47 0,95 0,75 0,41 0,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

к содержанию ↑

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

к содержанию ↑

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.

Рассчет падение напряжения по длине кабеля

220.guru

Расчёт потерь напряжения

Расчёт потерь напряжения в кабеле онлайн. Потеря напряжения в кабеле - величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (по ГОСТ 23875-88).

При равенстве сопротивлений Zп1=Zп2=Zп3 и Zн1=Zн2=Zн3 ток в нулевом проводе отсутствует (Рис.1), поэтому для трёхфазных линий потери напряжения рассчитываются для одного проводника. В двух- и однофазных линиях, а также в цепи постоянного тока, ток идёт по двум проводникам (Рис.2), поэтому вводится коэффициент 2 (при условии равенства Zп1=Zп2).

Расчёт потерь линейного (между фазами) напряжения в кабеле при трёхфазном переменном токе производится по формулам: ΔU(в)=(PRL+QXL)/Uл; ΔU(%)=(100(PRL+QXL))/ Uл² или (если известен ток) ΔU(в)=√3·I(R·cosφ·L+X·sinφ·L); ΔU(%)=(100√3·I(R·cosφ·L+X·sinφ·L))/ Uл , где: Q= Uл·I·sinφ Расчёт потерь фазного (между фазой и нулевым проводом) напряжения в кабеле производится по формулам: ΔU(в)=2·(PRL+QXL)/Uф; ΔU(%)=2·(100(PRL+QXL))/ Uф² или (если известен ток) ΔU(в)=2·I(R·cosφ·L+X·sinφ·L); ΔU(%)=2·(100·I(R·cosφ·L+X·sinφ·L))/Uф, где: Q= Uф·I·sinφ Для расчёта потерь линейного напряжения U=380 В; 3 фазы. Для расчёта потерь фазного напряжения U=220 В; 1 фаза.

Для постоянного тока cosφ=1; 1 фаза.

P - активная мощность передаваемая по линии, Вт; Q - реактивная мощность передаваемая по линии, ВАр; R - удельное активное сопротивление кабельной линии, Ом/м; X - удельное индуктивное сопротивление кабельной линии, Ом/м; L - длина кабельной линии, м; Uл - линейное напряжение сети, В; Uф - фазное напряжение сети, В. 

Вам помог этот калькулятор? Предложения и пожелания пишите на [email protected]

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.

НЕТ

allcalc.ru

Онлайн расчет потери напряжения в кабеле

Данный онлайн калькулятор позволяет произвести расчет потерь напряжения в кабеле, в частности это необходимо для того, что бы проверить выбранное сечение кабеля по потере напряжения в нем. Что бы выбрать сечение кабеля Вы можете воспользоваться нашим калькулятором расчета сечения кабеля по мощности.

Расчет потери напряжения в кабеле

ПРИМЕЧАНИЕ: Потери напряжения в кабеле для бытовой сети должны составлять не более 5% при напряжении 380/220 Вольт и не более 10% при напряжении 36/24/12 Вольт.

Потеря напряжения зависит от длины кабеля, его сечения и передаваемой по нему мощности, поэтому, в случае если рассчитанные относительные потери превышают величины указанные выше (5% — для 380/220В и 10% — для 36/24/12В) необходимо выбрать кабель большего сечения из ряда стандартных сечений кабелей и произвести расчет потерь повторно, так же можно снизить величину передаваемой по кабелю мощности, либо уменьшить его длину.

Стандартные сечения (мм2): 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150 и т.д.

Инструкция по использованию калькулятора расчета потерь напряжения в кабеле:

  1. Выбираем материал жил кабеля: Алюминий — в случае если расчет производится для кабеля с алюминиевыми жилами (например кабель марки АВВГ); Медь — в случае если расчет производится для кабеля с медными жилами (например кабель марки ВВГ).
  2. Указываем мощность которая будет подключена к рассчитываемому кабелю (вкилоВаттах! 1килоВатт=1000Ватт),
  3. Выбираем напряжение сети 380 Вольт — для трехфазной сети, либо 220 Вольт — для однофазной., так же есть возможность произвести расчет потерь кабеля для низковольтной сети: 36, 24 и 12 Вольт
  4. Указываем длину кабеля в метрах.
  5. Указываем расчетное сечение кабеля в мм2
  6. Нажимаем кнопку «РАСЧИТАТЬ»

В результате получаем три значения: относительные потери напряжения в % — величина которая отражает на сколько процентов снизится напряжение сети с учетом потерь; абсолютные потери в Вольтах — величина которая отражает на сколько Вольт уменьшится напряжение сети; Напряжение сети с учетом потерь — отражает величину напряжения в сети в Вольтах за вычетом потерь.

Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

elektroshkola.ru

Расчет потерь напряжения в кабеле

В процессе проектирования электрической проводки, необходимо провести точные расчеты потери напряжения в кабеле. Это позволяет предотвратить сильное нагревание поверхности проводов в процессе эксплуатации. Благодаря этим мерам удаётся избежать появления короткого замыкания и преждевременной поломки бытовых приборов.

Помимо этого, формула позволяет правильно подобрать диаметр сечения провода, который подойдет для разного вида электромонтажных работ. Неправильный выбор, может стать причиной поломки всей системы. Облегчить поставленную задачу помогает онлайн – расчет.

Как рассчитать потерю напряжения?

Калькулятор в режиме онлайн позволяет правильно вычислить необходимые параметры, которые в дальнейшем сократят появление различного рода неприятностей. Для самостоятельного вычисления потери электрического напряжения используют следующую формулу:

U =(P*ro+Q*xo)*L/U ном:

  • Р – это активная мощность. Её измеряют в Вт;
  • Q – реактивная мощность. Единица измерения вар;
  • ro – выступает в качестве активного сопротивления (Ом);
  • хо – реактивное сопротивление (м);
  • U ном – это номинальное напряжение (В). Оно указывается в техническом паспорте устройства.

Согласно правилам устройства электроустановок (ПУЭ) допустимой нормой возможных отклонений напряжения принято считать:

  • в силовых цепях оно может составлять не выше +/- 6%;
  • в жилом пространстве и за его пределами до +/- 5%;
  • на производственных предприятиях от +/- 5% до -2%.

Потери электрического напряжения от трансформаторной установки до жилого помещения не должны превышать +/- 10%.

В процессе проектирования, рекомендуется сделать равномерную нагрузку на трехфазной линии. Допустимая норма составляет 0,5 кВ. В ходе монтажных работ электродвигатели необходимо подключить к линейным проводникам. Линия освещения будет заключена между фазой и нейтралью. В результате этого, нагрузка правильно распределяется между проводниками.

Когда рассчитывают потерю напряжения в кабеле, за основу берут данные значения тока или мощности. На протяженной электрической линии учитывают индуктивное сопротивление.

Как снизить потери ?

Одним из способов снижения потери напряжения в проводнике, является увеличение его сечения. Помимо этого, рекомендуется сократить его протяженность и удаленность от точки назначения. В некоторых случаях эти способы не всегда можно применить по техническим причинам.В большинстве случаем, сокращение сопротивления позволяет нормализовать работу линии.

Главным недостатком большой площади сечения кабеля, являются существенные материальные затраты в процессе использования. Именно поэтому правильный расчёт и подбор нужного диаметра, позволяют избавиться от этой неприятности. Калькулятор в режиме онлайн применяют для проектов с высоковольтными линиями. Здесь программа помогает правильно рассчитать точные параметры для электрической цепи.

Основные причины появления потери напряжения

Большие потери электрического напряжения возникают в из – за чрезмерного рассеивания энергии. В результате этого, поверхность кабеля сильно нагревается, тем самым провоцируя деформирование изоляционного слоя. Такое явление распространено на высоковольтных линиях, где отмечают большие нагрузки.

Чаще всего существенные потери наблюдают на протяженных электролиниях. Помимо этого, здесь отмечают большие финансовые расходы на электричество в процессе эксплуатации.

Таблица потерь напряжения по длине кабеля

Определение потерь напряжения по длине кабеля

Воспользуйтесь другими онлайн калькуляторами:

electrikmaster.ru

Расчёт потерь напряжения в кабеле

  • Online расчёт заземления
  • Online расчёт сечения кабеля по мощности и току

Потеря напряжения в кабеле — величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (по ГОСТ 23875-88). Этот параметр необходимо знать при производстве любых электромонтажных работ — начиная от видеонаблюдения и ОПС и заканчивая системами электроснабжения промышленных объектов.

Рис.1 Рис.2

При равенстве сопротивлений Zп1=Zп2=Zп3 и Zн1=Zн2=Zн3 ток в нулевом проводе отсутствует (Рис.1), поэтому для трёхфазных линий потери напряжения рассчитываются для одного проводника.

В двух- и однофазных линиях, а также в цепи постоянного тока, ток идёт по двум проводникам (Рис.2), поэтому вводится коэффициент 2 (при условии равенства Zп1=Zп2).

Доступна Windows-версия программы расчёта потерь напряжения

Пояснения к расчёту

Расчёт потерь линейного (между фазами) напряжения в кабеле при трёхфазном переменном токе производится по формулам:

или (если известен ток)
где

Расчёт потерь фазного (между фазой и нулевым проводом) напряжения в кабеле производится по формулам:

или (если известен ток)
где

Для расчёта потерь линейного напряжения U=380 В; 3 фазы.

Для расчёта потерь фазного напряжения U=220 В; 1 фаза.

P - активная мощность передаваемая по линии, Вт; Q - реактивная мощность передаваемая по линии, ВАр; R - удельное активное сопротивление кабельной линии, Ом/м; X - удельное индуктивное сопротивление кабельной линии, Ом/м; L - длина кабельной линии, м; Uл - линейное напряжение сети, В; Uф - фазное напряжение сети, В.

Пожелания, замечания, рекомендации по улучшению раздела расчётов на нашем сайте просьба присылать по электронной почте [email protected]

Разрешается копирование java-скриптов при условии ссылки на источник.

ВСЕ РАСЧЁТЫ

www.ivtechno.ru

Онлайн калькулятор расчета потерь напряжения в кабеле

Кабельные линии большой протяженности отличаются значительным сопротивлением, которое вносит свои коррективы в работу сети. В зависимости от марки кабеля и других параметров будет отличаться и величина сопротивления. А величина потеть напряжения на кабельной линии прямо пропорциональна  этому сопротивлению.

При помощи онлайн калькулятора расчет потерь напряжения в кабеле  сводится к таким действиям:

  • Укажите длину кабеля в метрах и материал токоведущих жил в соответствующих окошках;
  • Сечение проводника в мм²;
  • Количество потребляемой электроэнергии в амперах или ваттах (при этом поставьте указатель напротив мощности или силы тока, в зависимости от того, какой параметр вам известен, и какую величину вы будете указывать);
  • Проставьте величину напряжения в сети;
  • Внесите коэффициент мощности cosφ;
  • Укажите температуру кабеля;

После того как вы внесли вышеперечисленных данные в поля калькулятора, нажмите кнопку “вычислить” и в соответствующих графах вы получите результат расчета – величину потерь напряжения в кабеле ΔU в %, сопротивление самого провода Rпр в Ом, реактивную мощность Qпр в ВАр и напряжение на нагрузке Uн.

Для вычисления этих величин вся система, включающая кабель и нагрузку, заменяется на эквивалентную, которую можно представить таким образом:

Схема замещения линии с нагрузкой

Как видите на рисунке, в зависимости от типа питания нагрузки (однофазная или трехфазная), сопротивление кабельной линии будет иметь последовательное или параллельное соединение по отношению к нагрузке. Расчет  в калькуляторе осуществляется по таким формулам:

  • для однофазной сети: ΔU = I*ZК = I*2*(RК+XК) и для расчета в процентном соотношении:
  • для трехфазной системы: Для расчета в процентном соотношении:

Где,

  • ΔU – потеря напряжения;
  • UЛ – линейное напряжение;
  • UФ – фазное напряжение;
  • I – ток, протекающий в линии;
  • ZК – полное сопротивление кабельной линии;
  • RК – активное сопротивление кабельной линии;
  • XК – реактивное сопротивление кабельной линии.

Из них UЛ, UФ, I, – задаются на этапе введения данных. Для определения полного сопротивления ZК производится арифметическое сложение его активной  RК и реактивной XК составляющей. Активное и реактивное сопротивление определяется по формулам:

RК = ( ρ * l ) / S

RК – активное сопротивление кабельной линии, где

ρ – удельное сопротивление для соответствующего металла (медь или алюминий), но величина удельного сопротивления материала величина не постоянная и может изменяться в зависимости от температуры, из-за чего для приведения его к реальным условиям выполняется пересчет по отношению к температуре:

ρt = ρ20 * [1 + a*(t-20)]

здесь:

  • a – это коэффициент температурного изменения удельного сопротивления материала.
  • ρ20 – удельное сопротивление материала при температуре +20ºС.
  • t – реальная температура проводника, в данный момент времени.
  • l – длина кабельной линии (если нагрузка однофазная, а кабель имеет две жилы, то обе они включены последовательно и длину необходимо умножить на 2)
  • S – площадь сечения проводника.

Зная активное сопротивление можно рассчитать реактивное XК, через коэффициент мощности по такой формуле:

Реактивная мощность определяется по такой формуле: Q = S*sin φ, где

Где S – это полная мощность, которую можно определить, как произведение тока в цепи на входное напряжение источника или как отношение активной мощности к коэффициенту мощности.

Для вычисления величины напряжения, приходящейся на нагрузку, производятся такие расчеты: UН = U – ΔU, где

  • Где UН – величина напряжения, приложенная к нагрузке;
  • U – напряжение на вводе в кабельную линию
  • ΔU – падение напряжения в кабельной линии.

www.asutpp.ru

Пример расчета потерь напряжения в кабельной линии - блог СамЭлектрик.ру

ГРЩ2.2. Показания фазных напряжений после первого участка кабельной линии

Как известно, сечение кабеля выбирается не только по его способности выдерживать без перегрева свой максимальный ток. Другой критерий выбора – его длина. От длины зависит такой важный параметр системы электропитания, как падение напряжения. Иначе говоря – потери на кабельной линии.

В бытовой электропроводке эта проблема практически не принимается во внимание, поскольку существенное влияние она оказывает на длинах кабелей от нескольких десятков метров. Хотя, я уже писал на эту тему статью про падение напряжения, но там основная причина потерь заключалась в большом токе.

В интернете эта тема раскрыта очень поверхностно, и когда я с ней столкнулся, очень долго разбирался. Вспомнил косинусы с синусами, нашёл свой старый калькулятор)) Пока разбирался, написал эту статью. Как обычно у меня и бывает).

В данной статье приведу расчеты и рекомендации, сделанные мной для крупного складского комплекса, введенного в эксплуатацию год назад.

Зачем нужен расчет потерь напряжения в кабеле

Предыстория такова. Проектировщикам выдали техническое задание на проект электроснабжения, в котором была указана мощность холодильных систем. Пока выполнялся проект и выделялись деньги на его реализацию, было куплено холодильное оборудование с потребляемой мощностью, в 2 раза превышавшей исходную. Кроме того, выяснилось, что реальное расстояние до подстанции будет почти в 2 раза больше…

В общем, дорогущее немецкое холодильное оборудование отказывается работать, все знают, что делать, но никто не хочет за это платить. Прошедшим летом из-за пониженного напряжения (линейное 340-360 В) сгорел компрессор стоимостью более 10 тыс.евро. Терпеть дальше это было нельзя. Меня попросили провести расчеты, мониторинг и измерения на системе питания, и дать рекомендации по решению проблемы.

Поскольку писал я этот отчет от лица фирмы, имеющей лицензию на энергоаудит, то этот документ будет иметь силу в предстоящей судебной тяжбе.

По ходу документа в цитатах буду давать комментарии и уточнения.

Было проведено обследование качество электроэнергии, поступающей от трансформаторной подстанции (ТП) по первому участку (440 м) до ГРЩ 2.2 и далее по вторым участкам (50 и 40 м) на холодильные установки (Система 12 и Система 14).

Схема структурная данной системы:

Схема кабельных линий от ТП до нагрузки. ДЭС – дизельная электростанция есть, но в данном случае не рассматривается.

Цель обследования – выявить причины значительного падения напряжения на кабельной линии.

В Систему 12 входят следующие потребители:

Наименование Установленная мощность, кВт Макс.расчетный ток, А
Воздухоохладитель 124,6 50,5
Воздухоохладитель 78,3 27,1
Двигатели компрессоров 100 132,7
Двигатели вентиляторов 13,7 29,7
Итого 316,6 240

В Систему 14 входят следующие потребители:

Наименование Установленная мощность, кВт Макс.расчетный ток, А
Воздухоохладитель 234,4 81,2
Воздухоохладитель 193,9 55,7
Воздухоохладитель 15,2 31,3
Двигатели компрессоров 396 525,6
Двигатели вентиляторов 66 144,3
Итого 905,5 838,1

Напряжение питания – 380…415 В.

Значения токов, мощностей и напряжения взяты из паспортных данных потребителей.

А что там свежего в группе ВК СамЭлектрик.ру?

  1. Предварительный расчет потерь напряжения в кабеле

По предварительному расчету, при напряжении на выходе ТП 415 В на холостом ходу (при выключенной нагрузке), при максимальной нагрузке допустимо падение 35 В, или 8,43%. В таком случае при максимальной нагрузке напряжение упадет до 380 В, что, согласно паспортным данным потребителей, является допустимым.

ТП содержит 2 трансформатора по 600 кВт, которые планировалось использовать по одному. Но из-за увеличения нагрузки их пришлось включить в параллель.

Согласно Своду правил по проектированию и строительству СП 31-110-2003, а также ГОСТ Р 50571.15-97 с учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной нагрузки в жилых и общественных зданиях не должны превышать 9%. Причем, из них 5% – на участке от ТП до ВРУ, и 4% – на участке от ВРУ до потребителя.

Согласно ГОСТ 29322-2014, номинальное фазное напряжение в трехфазных сетях должно составлять 400 В, а при нормальных условиях оперирования напряжение питания не должно отличаться от номинального напряжения больше чем на +-10%.

Исходя из этого, падение на 8,43% является обоснованным и соответствует Правилам и ГОСТам, принятым в РФ.

  1. Расчет падения напряжения для 1-го участка

В ходе обследования выяснилось следующее. От ТП, расположенной на расстоянии 440 м, электроэнергия поступает в ГРЩ2.2 по кабельной линии, состоящей из четырех параллельно соединенных кабелей АВБбШв 4х240, общим сечением 960 мм2.

Внутренности ГРЩ2.2. Сверху – ввод от ТП на вводной контактор-защитный автомат, справа – шины от АВР (резерв – дизель), ниже – выходной автомат, и выходы на Системы.

Максимальный расчетный ток нагрузки, согласно паспортным данным,  составляет  240 А для Системы 12 и 838,1 А для Системы 14. Следовательно, максимальный ток кабельной линии составляет 240+838,1=1078,1 А.

Общая установленная мощность, согласно паспортным данным,  составляет 316,6 кВт для Системы 12, и 905,5 кВт для Системы 14. Следовательно, общая установленная мощность всей нагрузки составляет 316,6+905,5=1222,1 кВт.

Рассчитаем падение напряжения на кабельной линии 1-го участка от ТП до ГРЩ2.2 по формуле:

ΔU=√3·I(R·cosφ·L+X·sinφ·L)

Исходные данные для расчета:

  • Максимальный ток I = 1078,1 А,
  • Установленная мощность нагрузки 1222,1 кВт,
  • Удельное активное сопротивление одной жилы R = 0,125 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Принимаем Cosφ = 0,8, тогда sinφ = 0,6
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,44 км.

Подставив данные в формулы, получим, что для одного кабеля падение составит 239 В, или 57,75%. Тогда для имеющейся кабельной линии 1-го участка падение напряжения составит 59,8 В, или 14,43%.

Такое падение напряжения только на 1-м участке является недопустимым.

Это  – основная формула. Я делал расчеты, используя калькулятор. Проверял полученные данные, используя программу Электрик (подпрограмма “Потери”).

Кроме того, мне здорово помог Игорь (220blog.ru), за что ему большое спасибо!

Ещё есть хорошая книжка, в конце статьи дам ссылку!

На всякий случай  таблица активных и индуктивных сопротивлений алюминиевых и медных кабелей разного сечения:

Таблица активных и индуктивных сопротивлений алюминиевых и медных кабелей разного сечения

  1. Результат обследования 2-го участка (Система 12)

После щита ГРЩ2.2 к нагрузке идёт второй участок кабельной линии на Систему 12, состоящей из одного кабеля АВВГ-нг-LS 5×185, длиной 50 м.

Данные для расчета:

  • Максимальный ток 240 А,
  • Установленная мощность нагрузки 316,6 кВт,
  • Удельное активное сопротивление одной жилы R = 0,164 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,05 км.

Для имеющейся кабельной линии падение напряжения составит 3,67 В, или 0,88%.

  1. Результат обследования 2-го участка (Система 14)

После щита ГРЩ2.2 к нагрузке идёт второй участок кабельной линии на Систему 14, состоящей из трех параллельно соединенных кабелей АВВГ-нг-LS 5×185 длиной 40 м.

Данные для расчета:

  • Максимальный ток 838,1 А,
  • Установленная мощность нагрузки 905,5 кВт,
  • Удельное активное сопротивление одной жилы R = 0,164 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,04 км.

Для одного кабеля потеря напряжения составит 10,2 В, или 2,47%. Для имеющейся кабельной линии 2-го участка Системы 14 падение напряжения составит 3,4 В, или 0,82%.

  1. Рекомендации по модернизации кабельных линий

Для данного максимального тока и длины линии необходимо выбрать другую кабельную линию участка 1, поскольку расчетное падение напряжения для этого участка является недопустимым. Исходя из данных предварительного расчета и данных падения напряжения на 2-х участках, падение напряжения на 1-м участке должно быть не более 7,55%.

Такой уровень потерь обеспечит кабельная линия, состоящая из 8 кабелей АВБбШв 4х240, включенных в параллель. То есть, к имеющимся кабелям (4 шт.) добавить дополнительные (4 шт.).

В результате, потери на кабельной линии участка 1 составят 7,2%, или 29,8 В.

Кабельные линии 2-х участков в модернизации не нуждаются.

Для стабильной работы холодильного оборудования, согласно его паспортным данным, требуется напряжение с допустимыми пределами от 380 до 415 В.

Если учесть приводимые рекомендации, то при выходном напряжении ТП 415 В при максимальной нагрузке потери напряжения для Системы 12 будут 7,2+0,88=8,08%, или 33,6 В. В результате при максимальной нагрузке питающее напряжение Системы 12 составит не менее 381,4 В.

Для Системы 14 потери будут 7,2+0,82=8,02%, или 33,2 В. В результате при максимальной нагрузке питающее напряжение Системы 14 составит не менее 381,7 В.

  1. Результаты измерений качества напряжения

Измерения проводились при помощи анализатора качества напряжения HIOKI 3197, который позволяет снимать все параметры напряжения онлайн.

Прибор предназначен для построения графиков различных параметров электропитания в реальном времени. HIOKI 3197 я уже использовал в анализе качества напряжения при проблемах с холодильниками. Если кому нужен такой прибор – обращайтесь!

Измерения проводились в точке подключения 2-го участка Системы 14 в разных режимах работы оборудования. 2-й участок Системы 12 не исследовался, поскольку к нему невозможно было получить доступ, не отключая питания ТП. Но поскольку Система 12 является маломощной по сравнению с Системой 14, для получения общей картины достаточно измерений, результаты которых приведены ниже на графиках.

Результат мониторинга напряжения

Результат мониторинга тока

Пояснения к графикам.

Пик потребления тока (включение нагрузки на 100% мощности) приходится на время 16:56. При этом фазное напряжение (усредненное по фазам) составляет 212 В (линейное – 367 В), ток 836 А.

Холостой ход трансформатора (нагрузка полностью отключена) приходится на 17:07. При этом фазное напряжение составляет 238 В (линейное – 412 В), ток 0 А.

При проведении измерений Система 12 была отключена.

По результатам проведенных измерений можно сделать выводы, что максимальное суммарное падение напряжения для Системы 14 составляет 45 В, или 11%.

Данные измерения подтверждают правильность сделанных расчетов и рекомендаций.

Фото подключения прибора HIOKI 3197 к кабельной линии в процессе измерений:

Подключение HIOKI 3197 для измерения параметров напряжения в реальном времени

Резервное питание в ГРЩ 2.2 поступает от ДЭС (дизельной электростанции). Переключение производится через систему АВР (автоматический ввод резерва).

Параметры источника резервного питания:

  • Максимальная мощность ДЭС – 600 кВт,
  • Кабельная линия – 3 кабеля АВБбШв 4х240, включенных в параллель,
  • Длина кабельной линии – 250 м.

Исходя из этих параметров, можно однозначно сделать вывод, что мощностей ДЭС и кабельной линии резервного питания с учетом падения напряжения хватит не более чем на половину максимальных потребностей нагрузки, что совершенно недопустимо.

Поэтому мониторинг качества питания по линии ДЭС проводить не имеет никакого смысла.

Для резервного питания в данном случае рекомендуется применить ДЭС мощностью не менее 1220 кВт. Кабельная линия должна содержать 5 кабелей АВБбШв 4х240, в таком случае падение напряжения до ГРЩ 2.2 будет составлять приемлемое значение 6,5%.

Скачать файл

В заключение – как и обещал, хорошая книжка по расчетом потери напряжения и потерям напряжения в кабеле. Будет очень интересна всем, кого заинтересовала эта статья. Сейчас таких книг уже не пишут.

• Карпов Ф. Ф. Как выбрать сечение проводов и кабелей, 1973 год / Брошюра из Библиотеки электромонтера. Приведены указания и расчеты, необходимые для выбора сечений проводов и кабелей до 1000 В., zip, 1.57 MB, скачан:210 раз./

Ещё много книг можно у меня скачать тут.

Статья понравилась?Добавьте её в свою соц.сеть и дайте оценку!

(5 оценок, среднее: 5,00 из 5) Загрузка...

samelectric.ru


Смотрите также